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Å The objective in kernel learning is to jointly learn both SVM 
and kernel parameters from training data. 

 
Å Kernel parameterizations 
Å Linear : ὑ ВὨὑ  
Å Non-linear : ὑ Бὑ БὩ  

 
Å Regularizers 
Å Sparse l1  
Å Sparse and non-sparse lp>1 
Å Log determinant 

Kernel Learning 



Å Vedaldi, Gulshan, Varma and Zisserman ICCV 2009 

Kernel Learning for Object Detection 



Å Orabona, Jie and Caputo CVPR 2010 

Kernel Learning for Object Recognition 



Å Varma and Babu ICML 2009 
 

FERET Gender Identification Data Set 

Kernel Learning for Feature Selection 

# 
Feat 

AdaBoost 
Baluja et al. 

[IJCV 2007] 

OWL-QN 
[ICML 2007] 

LP-SVM  

[COA 2004] 

SSVM QCQP 
[ICML 2007] 

BAHSIC 

[ICML 2007] 

Linear 

MKL  

Non-Linear 
MKL 

10 76.3 ° 0.9 79.5 ° 1.9 71.6 ° 1.4 84.9 ° 1.9 79.5 ° 2.6 81.2 ° 3.2 80.8 ° 0.2 88.7 ° 0.8 

20 - 82.6 ° 0.6 80.5 ° 3.3 87.6 ° 0.5 85.6 ° 0.7 86.5 ° 1.3 83.8 ° 0.7 93.2 ° 0.9 

30 - 83.4 ° 0.3 84.8 ° 0.4 89.3 ° 1.1 88.6 ° 0.2 89.4 ° 2.4 86.3 ° 1.6 95.1 ° 0.5 

50 - 86.9 ° 1.0 88.8 ° 0.4 90.6 ° 0.6 89.5 ° 0.2 91.0 ° 1.3 89.4 ° 0.9 95.5 ° 0.7 

80 - 88.9 ° 0.6 90.4 ° 0.2 - 90.6 ° 1.1 92.4 ° 1.4 90.5 ° 0.2 - 

100 - 89.5 ° 0.2 90.6 ° 0.3 - 90.5 ° 0.2 94.1 ° 1.3 91.3 ° 1.3 - 

150 - 91.3 ° 0.5 90.3 ° 0.8 - 90.7 ° 0.2 94.5 ° 0.7 - - 

252 - 93.1 ° 0.5 - - 90.8 ° 0.0 94.3 ° 0.1 - - 

76.3(12.6) - 91 (221.3) 91 (58.3) 90.8 (252) - 91.6(146.3) 95.5 (69.6) 



P = Minw,b,d  ½ἿἿ ὅВὒἿ Ἤὀ ὦȟώ ὶἬ 
 s. t.  Ἤᶰ ╓ 
 

Å ὑἬὀȟὀ Ἤὀ Ἤὀ ṋπ   ᶅἬᶰὈ 

Å Ἤὑ and Ἤὶ exist and are continuous 

The GMKL Primal Formulation 



Å The GMKL primal formulation for binary classification. 
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The GMKL Primal Formulation 



Å The GMKL primal formulation for binary classification. 
 

P = Minw,b,d, ‚  ½ἿἿ ὅВ‚ ὶἬ 
 s. t.   ώἿ Ἤὀ ὦ ρ ‚ 
   ‚ π & Ἤᶰ ╓ 
 
Å Intermediate Dual 
 
D = Mind Maxa  1ta – ½atYKdYa  + r(d) 
 s. t.  1tYa = 0   
   0 ¢ a ¢ C & Ἤᶰ ╓ 
 

The GMKL Primal Formulation 



Projected Gradient Descent 
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Projected Gradient Descent 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
1

d
2

Ø 

Ø 



Projected Gradient Descent 
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Projected Gradient Descent 
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Projected Gradient Descent 
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Å PGD requires many function and gradient evaluations as 
Å No step size information is available. 
Å The Armijo rule might reject many step size proposals. 
Å Inaccurate gradient values can lead to many tiny steps. 
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Å PGD requires many function and gradient evaluations as 
Å No step size information is available. 
Å The Armijo rule might reject many step size proposals. 
Å Inaccurate gradient values can lead to many tiny steps. 
 

Å Noisy function and gradient values can cause PGD to   
converge to points far away from the optimum. 
 
Å Solving SVMs to high precision to obtain accurate function 
and gradient values is very expensive. 
 
Å Repeated projection onto the feasible set might also be 
expensive. 

PGD Limitations 



SPG Solution – Spectral Step Length 

Å Quadratic approximation : ½‗ ὀὀ Ἣὀ Ὠ 

Å Spectral step length : ‗
ὀ  ὀ ȟ ὀ  ὀ

ὀ  ὀ ȟ ὀ   ὀ
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SPG Solution – Spectral Step Length 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Ø Ø 

Å Spectral step length : ‗
ὀ  ὀ ȟ ὀ  ὀ

ὀ  ὀ ȟ ὀ   ὀ
 



Å Accept P(zt) if it satisfies the Armijo rule 

PGD Limitations – Repeated Projections 

xt 

zt 

P(zt) 

– f 



Å Accept P(zt) if it satisfies the Armijo rule 

xt 

zt 

P(zt) 

– f 

PGD Limitations – Repeated Projections 



Å PGD might require many projections before accepting a point 

xt 

zt 

P(zt) 
– f 

PGD Limitations – Repeated Projections 



Å SPG requires a single projection per step 

xt 

zt 

P(zt) – spg 

– f 

SPG Solution  – Spectral Proj Gradient 



Å Handling function and gradient noise. 

Å Non-monotone rule: Ὢὼ ί​Ὢὼ ÍÁØὪὼ  ‎ί​Ὢὼ  

SPG Solution – Non-Monotone Rule 
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Å The Armijo rule might get stuck due to noisy function values 

PGD Limitations – Step Size Selection 
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SPG Solution – SVM Precision Tuning 
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Å SPG requires fewer function and gradient evaluations due to 
Å The 2nd order spectral step length estimation. 
Å The non-monotone line search criterion. 
 

Å SPG is more robust to noisy function and gradient values 
due to the non-monotone line search criterion. 
 
Å SPG never needs to solve an SVM with high precision due to 
our precision tuning strategy. 
 
Å SPG needs to perform only a single projection per step. 

SPG Advantages 



1: ὲᴺπ 
2: )ÎÉÔÉÁÌÉÚÅ Ἤ ÒÁÎÄÏÍÌÙ 
3: ἺἭἸἭἩἼ 
4: ᶻᴺ3ÏÌÖÅ36-ἕἬ ȟצ 
5: ‗N 3ÐÅÃÔÒÁÌ3ÔÅÐ,ÅÎÇÔÈ 
6: Ἰ ᴺἬ ἜἬ ὡ Ἤȟᶻ  
7: Óᴺ.ÏÎ-ÏÎÏÔÏÎÅ 
8: Nצ 4ÕÎÅ36-0ÒÅÃÉÓÉÏÎ 
9: Ἤ ᴺἬ ÓἸ  
10: ἽἶἼἱἴ ÃÏÎÖÅÒÇÅÄ 
 

SPG Algorithm 



Å Covertype: Sum of kernels subject to ὰȢ  regularization 
Å Number of training points 581,012 
Å Number of Kernels 5 
Å SPG time taken 64.46 hrs 
 

Å SPG took 26 SVM evaluations 
 
Å First SVM evaluation took 44 hours 
 
Å Only 0.19% of SV were cached 

 

Results on Large Scale Data Sets 



Å Sonar: Sum of kernels subject to ὰȢ  regularization 
Å Number of training points 208 
Å Number of Kernels 1 Million 
Å SPG time taken 105.62 hrs 
 
 

Results on Large Scale Data Sets 
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SPG p=1.33

SPG p=1.66

PGD p=1.33

PGD p=1.66



Å Sum of kernels subject to ὰ  regularization 

Results on Large Scale Data Sets 

Data Sets # Train # Kernels 
p=1 p=1.33 

PGD (hrs) SPG (hrs) PGD (hrs) SPG (hrs) 

Adult - 9 σςȟυφρ 50 35.84 4.55 31.77 4.42 

Cod - RNA 59,535 50 ɀ  25.17 66.48 19.10 

KDDCup04 50,000 50 – 40.10 –  42.20 



Å Sum of kernels subject to ὰ regularization 

Results on Small Scale Data Sets 

Data Sets SimpleMKL (s) Shogun (s) PGD (s) SPG (s) 

Wpbc τππρςψȢτ ρυ χȢχ σψ ρχȢφ φ τȢς 

Breast - Cancer φχφσυφȢτ ρς ρȢς υχ ψυȢρ    υ πȢφ     

Australian σψσσσȢυ        ρπωτφςρȢφ ςω χȢρ   ρπ πȢψ   

Ionosphere ρςτχφψπȢπ      ρπχρψȢψ ρσωςψςτȢς   σω φȢψ   

Sonar  ρτφψρςυςȢχ ωσυφυȢπ –  ςχσφτȢπ   



Å Product of kernels subject to ὰ  regularization 

Results on Large Scale Data Sets 

Data Sets # Train # Kernels 
p=1 p=1.33 

PGD (hrs) SPG (hrs) PGD (hrs) SPG (hrs) 

Letter 20,000 16 18.66 0.67 18.69 0.66 

Poker 25,010 10 5.57 0.49 2.29 0.96 

Adult - 8 22,696 42 ɀ  1.73 ɀ 3.42 

Web - 7 24,692 43 ɀ  0.88 ɀ 1.33 

RCV1 20,242 50 ɀ 18.17 ɀ 15.93 

Cod - RNA 59,535 8 ɀ  3.45 ɀ 8.99 



Å Sum of kernels subject to ὰȢ regularization 

Effect of Individual Components 

Data Sets 

PGD PGD + N PGD + S PGD + N + S 

Time (s) # SVMs Time (s) # SVMs Time (s) # SVMs Time (s) # SVMs 

Australian σωȢτ φȢπ    σςσπ σςȢχ σȢφ   ρρφ σρχȢπ τωȢρ υωψπ χȢπ ρȢφ φςρ 

Sonar χψυȢυ τχρȢρ  ςπωτφρ τρȢφ ρχȢρ σςσφ τπȢς ςτȢφ σψπφ ωȢπ ρȢψ ςτςχ 

Breast -
Cancer 

ςσχȢσ ωχȢψ      ρπωυωω τςȢς τȢρ    ρρψχ ρτȢω ςȢς   συσχ ψȢφ ςȢς σππφ 

Diabetes  χσȢφ σψȢψ  ςωστχ ςφȢσ ωȢυ    ςωφφ ρπȢυ ςȢφ    ρςσω τȢρ πȢυ φωυ 

Wpbc  ττȢτ ρρȢφ  ρτσχφ ςχȢω ρσȢφ ωσψψ ςȢω πȢψ  στπ ρȢς πȢτ χω 



Å Sum of kernels subject to ὰȢ  regularization 

SVM Precision Tuning 

Data Sets # Train # Kernels 
PGD           
(hrs) 

PGD + N + S 
(hrs) 

SPG 
(hrs) 

Adult - 9 32,561 50 31.77 8.33 4.43 

Web - 8 49,749 50 4.27 1.73 0.87 

Sonar 208 100,000 53.91 3.35 2.19 



Å Scaling with the number of training points  

SPG Scaling Properties 
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ÅDeveloped a generic and efficient MKL optimizer. 
 
ÅExperimented with four different MKL formulations and 

solved both small and large scale problems.  
 
ÅCombining spectral step length and non-monotone rule 

gives best performance. 
 
ÅQuasi Newton methods not suitable for MKL problems 

due to noisy gradient. 
 
 

Code: http:// research.microsoft.com/en-us/um/people/manik/code/SPG-GMKL/download.html 

Conclusions 
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