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Abstract
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Deep Recurrent Neural Network architectures, though
remarkably capable at modeling sequences, lack an intu-
itive high-level spatio-temporal structure. That is while
many problems in computer vision inherently have an un-
derlying high-level structure and can bene t from it. Spatio-
temporal graphs are a popular tool for imposing such high-
level intuitions in the formulation of real world problems.
In this paper, we propose an approach for combining the
power of high-level spatio-temporal graphs and sequence
learning success of Recurrent Neural Networks (RNNs). We
develop a scalable method for casting an arbitrary spatio-
temporal graph as a rich RNN mixture that is feedforward, 1
fully differentiable, and jointly trainable. The proposed Figure 1: From st-graph to S-RNN for an example problem. (Bot-
method is generic and principled as it can be used for trans- ts?JTr)] Sg%vjmasnrgxii’:‘eps'ebgtchti‘éitgtggﬁg]%“tgcggﬁyég%mfgdIe'\)"osdte"”9
forml_ng any spatlo-temporal graph throth_ employlng a graphpcapturing s?)atial and ter?”lporal interac?ions between the human and
certain set of well de ned steps. The evaluations of the pro- the objects.(Top) Schematic representation of our structural-RNN archi-
posed approach on a diverse set of problems, ranging fromtecture automatically derived from st-graph. It captures the structure and
modeling human motion to object interactions, shows im- interactions of st-graph in a rich yet scalable manner.
provement over the state-of-the-art with a large margin. We
expect this method to empower new approaches to problenspatio-temporal in nature. For example, during a cooking
formulation through high-level spatio-temporal graphs and activity, humans interact with multiple objects both in space
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Recurrent Neural Networks. and through time. Similarly, parts of human body (arms,
legs, etc.) have individual functions but work with each

Links: mWeb other in concert to generate physically sensible motions.
Hence, bringing high-level spatio-temporal structures and

1. Introduction rich sequence modeling capabilities together is of particular
importance for many applications.

The world we live in is inherently structured. It is com- The notable success of RNNs has proven their capability
prised of components that interact with each other in spaceon many end-to-end learning task[ 14, 10, 66]. How-

and time, leading to a spatio-temporal composition. Utiliz- ever, they lack a high-level and intuitive spatio-temporal
ing such structures in problem formulation allows domain- structure though they have been shown to be successful
experts to inject their high-level knowledge in learning at modeling long sequences$d 43, 57]. Therefore, aug-
frameworks. This has been the incentive for many ef- menting a high-level structure with learning capability of
forts in computer vision and machine learning, such as RNNs leads to a powerful tool that has the best of both
Logic Networks [1€], Graphical Models 7€), and Struc-  worlds. Spatio-temporal graphs (st-graphs) are a popu-
tured SVMs p6]. Structures that span over both space and lar [39, 37, 4, 11, 32, 65, 27] general tool for representing
time (spatio-temporal) are of particular interest to computer such high-level spatio-temporal structures. The nodes of the
vision and robotics communities. Primarily, interactions be- graph typically represent the problem components, and the
tween humans and environment in real world are inherently edges capture their spatio-temporal interactions. To achieve
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the above goal, we develop a generic tool for transforming http://asheshjain.org/srnn .

an arbitrary st-graph into a feedforward mixture of RNNS,  The contribution of this paper are: 1) a generic method

named structural-RNN (S-RNN). Figuieschematically il-  for casting an arbitrary st-graph as a rich, scalable, and

lustrates this process, where a sample spatio-temporal probjintly trainable RNN mixture, 2) in defence of structured

lem is shown at the bottom, the corresponding st-graph rep-approaches, we show S-RNN signi cantly outperforms its

resentation is shown in the. middle, and our RNN mixture nstructured (plain-vanilla) RNN counterparts, 3) in de-

counterpart of the st-graph is shown at the top. fence of RNNs, we show on several diverse spatio-temporal
In high-level steps, given an arbitrary st-graph, we rst problems that modeling structure with S-RNN outperforms

roll it out in time and decompose it into a set of contribut- the non-deep learning based structured counterparts.

ing factor components. The factors identify the indepen-

dent components that collectively determine one decision

and are derived from both edges and nodes of the st—graph.z' Related Work

We then semantically group the factor components and rep- e give a categorized overview of the related literature.
resent each group using one RNN, which results in the de- general, three main characteristics differentiate our work
sired RNN mixture. The main challenges of this transfor- ¢rom existing techniques: being generic and not restricted to
mation problem are: 1) making the RNN mixture as rich as speci ¢ problem, providing a principled method for trans-

possible to enable learning complex functions, yet 2) keep-¢oming a st-graph into a scalable rich feedforward RNN
ing the RNN mixture scalable with respect to size of the ixture. and being jointly trainable.

input st-graph. In order to make the resulting RNN mix-

ture rich, we liberally represent each spatio-temporal factor . ; : !
tial and temporal reasoning are very common in robotics

(including node factors, temporal edge factors, and spatio- . i o
temporal edge factors) using one RNN. On the other hand,2"d computer vision. Examples include human activity
to keep the overall mixture scalable but not lose the essen-/€cognition and segme.n:]atrl]on from l;/.'de('.(‘”[ L o

tial learning capacity, we utilize “factor sharing” (aka clique ™ =7 7' 1, contexé—r:f: ;]Jman-o Je(t:.t interactionsq
templates{, 42, 57]) and allow the factors with similar se- > “& ° o~ ], mo lemg uman Imo '0(;‘ B i t'] .
mantic functions to share an RNN. This results in a rich and €'¢:  >patio-lemporal reéasoning a'so nds appiication in
scalable feedforward mixture of RNNSs that is equivalent to assistive robots, driver understanding, and preCt. recogni-
the provided st-graph in terms of input, output, and spatio- tion[ 1oo T e .]' In fact most of our de_uly activities
temporal relationships. The mixture is also fully differen- &€ spatio-temporal in nature. With growing interests in rich

tiable, and therefore, can be trained jointly as one entity. interactions and _robot|cs, this form of reasoning .W'” be-
come even more important. We evaluate our generic method

The proposed method is principled and generic as they three context-rich spatio-temporal problems: (i) Human
transformation is based on a set of well de ned steps and mqtion modeling [ 4]; (i) Human-object interaction under-

it is applicable to any problem that can be formulated as standing B3]; and (iii) Driver maneuver anticipatior2p].

st-graphs (as de ned in Sectid). Several previous works . ) : . :

have attempted solving speci ¢ problems using a collection _Mlxture§ of deep arch|tectur¢§everal prewous_works
build multiple networks and wire them together in order

of RNNs [49, 12, 61, 10, 5], but they are almost unani- . i .

mously task-speci c. They also do not utilize mechanisms o capture_some cpmplex structure (or. mtgractlons) in the

similar to factorization or factor sharing in devising their problem with promising results on applications such as ac-

architecture to ensure richness and scalability. tivity detection, scene labeling, image captioning, and ob-
. . . . ject detection ]2, 5, 9, 16, 49, 61]. However, such archi-

_ S-RNN is also modular, as it is enjoying an underlying iectyres are mostly hand designed for speci ¢ problems,
high-level structure. This enables easy high-level manip- 4,41 they demonstrate the bene tin using a modular deep
ulations which are basically not possible in unstructured ichitecture. Recursive Neural NetworksT are, on the
(pIa|r_1-van|IIa) RINNS (e:g., we will ex_perlment_al_ly show  gther hand, generic feedforward architectures, but for prob-
forming a feasible hybrid human motion by mixing parts emg with recursive structure such as parsing of natural sen-
of different motion styles_ - Set.2). We evqluate the pro-  tences and scenes 1. Our work is a remedy for prob-
posed approach on a diverse set of spatio-temporal probigmg expressed as spatio-temporal graphs. For a new spatio-
lems (human pose modeling and forecasting, human-objectemporal problem in hand, all a practitioner needs to do is

interaction, and driver decision making), and show signif- 4 eyress their intuition about the problem as an st-graph.

icant improvements over the state of the art on each prob- . . .
b P Deep learning with graphical modelsany works have

lem. We also study complexity and convergence proper- " dd ks with hical models f
ties of S-RNN and provide further experimental insights by addressed deep networks wit graphical mode's for struc-
tured prediction tasks. Bengio et ai][combined CNNs

visualizing its memory cells that reveals some cells inter- ith HMM for hand writi i T i
estingly represent certain semantic operations. The code"! or hand writing recognition. 1ompson €

of the entire framework that accepts a st-graph as the in-al' [5€] jointly train CNN and MRF for human pose esti-

put and yields the output RNN mixture is available at the matiqn. (_:hen et al.7) use a similar approach for image
classi cation with general MRF. Recently several works

Spatio-temporal problemsProblems that require spa-
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(a) Spatio-temporal graph representing an activity (b) Unrolled through time (c) Factor graph parameterization

Figure 2: An example spatio-temporal graph (st-graph) of a human activity.(a) st-graph capturing human-object interaction. (b) Unrolling the st-graph

through edge&r . The nodes and edges are labelled with the feature vectors associated with them. (c) Our factor graph parameterization of the st-graph.

Each node and edge in the st-graph has a corresponding factor.

have addressed end-to-end image segmentation with fullynected with undirectettmporaledgeiff (u;v) 2 Et.*

connected CRFA, 41, 15, 40]. Several works follow a Given a st-graph and the feature vectors associated with
two-stage approach and decouple the deep network frome nodes!, and edgest, as shown in Figuréb, the goal

CRF. They have been applied to multiple problems includ- js to predict the node labels (or real value vectars)at

ing image segmentation, pose estimation, document pro-gach time step. For instance, in human-object interaction,
cessing p4, 6, 38, 3] etc. All of these works advocate and  the node features can represent the human and object poses,
well demonstrate the bene t in exploiting the structure in  and edge features can their relative orientation; the node la-
the problem together with rich deep architectures. How- pe|s represent the human activity and object affordance. La-
ever, they largely do not address spatio-temporal problemspe|yt is affected by both its node and its interactions with
and the proposed architectures are task-speci c. other nodes (edges), leading to an overall complex system.

Conditional Random Fields (CRMF)odel dependencies Such interactions are commonly parameterized with a fac-
between the outputs by learning a joint distribution over tor graph that conveys how a (complicated) function over
them. They have been applied to many applicaticivs [  the st-graph factorizes into simpler functions]l We de-

, 45] including st-graphs which are commonly modeled rive our S-RNN architecture from the factor graph represen-
as spatio-temporal CREY, 33, 65, 11]. In our approach, tation of the st-graph. Our factor graph representation has
we adopt st-graphs as a general graph representation and factor function (yy;Xy) for each node and a pairwise
embody it using an RNN mixture architecture. Unlike CRF, factor e(Ye();Ye(2); Xe) for each edge. Figurgc shows
our approach is not probabilistic and is not meant to model the factor graph corresponding to the st-grapl2in 2
the joint distribution over the outputs. S-RNN instead learns
the dependencies between the outputs via structural sharin
of RNNs between the outputs.

Sharing factors between nodesEach factor in the st-
Yraph has parameters that needs to be learned. Instead of
learning a distinct factor for each node, semantically similar
. nodes can optionally share factors. For example, all “object
3. Structural-RNN architectures nodes”f u,wg in the st-graph can share the same node fac-

) ) _ ~ tor and parameters. This modeling choice allows enforcing

In this section we describe our approach for building parameter sharing between similar nodes. It further gives
structural-RNN (S-RNN) architectures.  We start with a the exibility to handle st-graphs with more nodes without
st-graph, decompose it into a set of factor components, thenncreasing the number of parameters. For this purpose, we
represent each factor using a RNN. The RNNs are intercon—partition the nodes &8, = fVi;::; Vb gwhereV, is a set of

nected in a way that the resulting architecture captures thesemantically similar nodes, and they all use the same node

structure and interactions of the st-graph. factor v, . In Figure3awe re-draw the st-graph and assign
3.1. Representation of spatio-temporal graphs same color to the nodes sharing node factors.

Many applications that require spatial and temporal rea- ~ Partitioning nodes on their semantic meanings leads to a
soning are modeled using st-grapis 1, 33, 65, 27]. We natural semantic partition of the edg€s, = fEq;:;;Em g,

represent a st-graph witB = (V;Es;Er), whose struc-  WhereEy, is a set of edges whose nodes form a seman-
ture (V; Es) unrolls over time through edgé . Figure2a  tic pair. Therefore, all edges in the sBt, share the
shows an example st-graph capturing human-object inter-Same edge factor g, . For example all “human-object
actions during an activity. The nodes2 V and edges
e?2 ES. [ E 1 of the st-graph repeats over time. In partic- 1For simplicity, the example st-graph in Figute considers temporal
ular, Figure2b shows the same st-graph unrolled through edges of the forngv;v) 2 Et .
time. In the unrolled st-graph, the nodes at a given time °Note that we adopted factor graph as a tool for capturing interactions
stept are connected with undirectes@atio-temporabdge and not modeling the overall function. Factor graphs are commonly used
_ . . . in probabilistic graphical models for factorizing joint probability distribu-
e=(uyv)2 E.S’ and the nodes at ad)acent time steps (Say tions. we consider them for general st-graphs and do not establish relations
the nodeu at timet and the node at timet + 1) are con- to its probabilistic and function decomposition properties.
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Figure 3: An example of st-graph to S-RNN. (a)The st-graph from Figur2 is redrawn with colors to indicate sharing of nodes and edge factors. Nodes

and edges with same color share factors. Overall there are six distinct factors: 2 node factors and 4 edgje&BISN architecture has one RNN for

each factor. EdgeRNNs and nodeRNNSs are connected to form a bipartite graph. Parameter sharing between the human and object nodes happen through
edgeRNNR g, . (c) The forward-pass for human nodénvolve RNNsSR e, , Rg, andRy, . In Figure4 we show the detailed layout of this forward-pass.

Input features intdR g, is sum of human-object edge featuras, + Xv.w . (d) The forward-pass for object nodeinvolve RNNsRg, ,Rg,,Rg, and

Ry, . Inthis forward-pass, the edgeRNRg , only processes the edge featukg, . (Best viewed in color)

edges’f (v; u); (v; w)g are modeled with the same edge fac- Algorithm 1 From spatio-temporal graph to S-RNN

tor. Sharing factors based on semantic meaning makes the Input G= (V:Es:Er),Cy = fVi::: Vg

overall parametrization compact. In fact, sharing param- Output S-RNN g,rapr(,-:R _ (fRE, g',va g Er)

eters is necessary to address applications where the num- 1: Semantically partition edgec " ,fEl' ‘:’::.’EM 9

ber of nodes depends on the context. For example, in 5. Find factor components v.: & gof’G,
human-object interaction the number of object nodes vary 3: Represent eachy,. with a r;)c;deF?Nl\Rv

with the environment. Therefore, without sharing param- 4: Represent eachEp with an edgeRNl\RpE

eters between the object nodes, the model cannot gener- 5: Connecf R g garn;deV gto form abipa?tite graph.
alize to new environments with more objects. For mod- (Re. :Ry.) 2 ER it 9v 2”V U2V st(u;v) 2 Enm
eling exibility, the edge factors are not shared across the  po4iin Gsz (fRe. g.fRy gp"ER) '

edges inEs and Er. Hence, in Figure3a object-object m= P
(w;w) 2 Er temporal edge is colored differently from
object-objec{u; w) 2 Es spatio-temporal edge.

) , fect the label of some node in the st-graph. To summarize,
__Inorder to predict the label of node2 V,, we consider iy Algorithm 1 we show the steps for constructing S-RNN
its node factor v, , and the edge factors connected/tm architecture. Figur&b shows the S-RNN for the human
the factor graph. We de ne a node factor and an edge faCtoractivity represented in Figurga. The nodeRNNs combine

as neighbors if they jointly affect the label of some node in o outputs of the edgeRNNSs they are connected to (i.e. its
the st-graph. More formally, the node factoy, and edge  \gjghhorsin the factor graph), and predict the node labels.
facto_r E, areneighborsif there exista node 2 V, such The predictions of nodeRNNs (eRy, andRy,) interact
that it connects to bothy, and g, inthe factor graph. — ,:5,gh the edgeRNNs (&, ). Each edgeRNN handles
We will use this de nition in building S-RNN architecture 5 gyacj ¢ semantic interaction between the nodes connected
such that it captures the interactions in the st-graph. in the st-grap and models how the interactions evolve over
time. In the next section, we explain the inputs, outputs, and
the training procedure of S-RNN.

3.3. Training structural-RNN architecture

3.2. Structural-RNN from spatio-temporal graphs

We derive our S-RNN architecture from the factor graph
representation of the st-graph. The factors in the st-graph
operate in a temporal manner, where at each time step the In order to train the S-RNN architecture, for each node
factors observe (node & edge) features and perform someof the st-graph the features associated with the node are fed
computation on those features. In S-RNN, we representinto the architecture. In the forward-pass for nad2 V,,
each factor with an RNN. We refer the RNNs obtained from the input into edgeRNNR g, is the temporal sequence of
the node factors as nodeRNNs and the RNNs obtained fromedge featurez! on the edge 2 E,, where edge is inci-
the edge factors as edgeRNNs. The interactions representedent to nodev in the st-graph. The nodeRNR\, at each
by the st-graph are captured through connections betweerime step concatenates the node featrend the outputs
the nodeRNNSs and the edgeRNNs. of edgeRNNs it is connected to, and predicts the node label.

v. and the edge factor g asRy, andRg. respec- Propagated through the nodeRNN and edgeRNNs involved
P m p m

tively. In order to obtain a feedforward network, we con- during the forward-pass. That way, S-RNN non-linearly
nect the edgeRNNs and nodeRNNs to form a bipartite graphcombines the node and edge features associated with the
Gk = (fRe, G;fRv,g;E). In particular, the edgeRNN nodes in order to predict the node labels.

REg,, isconnected to the nodeRNRY, iff the factors g, Figure 3c shows the forward-pass through S-RNN for
and v, areneighborsin the st-graph, i.e. they jointly af-  the human node. Figureshows a detailed architecture lay-
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Figure 4: Forward-pass for human nodev. Shows the architecture
layout corresponding to the FiguBe on unrolled st-graph. (View in color)

out of the same forward-pass. The forward-pass involves
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Figure 5: Diverse spatio-temporal tasks We apply S-RNN to the fol-
lowing three diverse spatio-temporal problems. (View in color)

Figure5. The applications include: (i) modeling human
motion [L4] from motion capture data’[l]; (i) human ac-

tivity detection and anticipatior?p,

]; and (iii) maneuver

anticipation from real-world driving data 7.

4.1. Human motion modeling and forecasting

object node$u,wg, we pass the summation of the twoedge  Human body is a good example of separate but well
features as input t®e,. The summation of features, as related components. Its motion involves complex spatio-
opposed to concatenation, is important to handle variabletemporal interactions between the components (arms, legs,
number of object nodes with a xed architecture. Since the spine), resulting in sensible motion styles like walking, eat-
object count varies with environment, it is challenging to ing etc. In this experiment, we represent the complex mo-
represent variable context with a xed length feature vector. tion of humans over st-graphs and learn to model them with
Empirically, adding features works better than mean pool- S-RNN. We show that our structured approach outperforms
ing. We conjecture that addition retains the object count the state-of-the-art unstructured deep architectiig ¢n

and the structure of the st-graph, while mean pooling av- motion forecasting from motion capture (mocap) data. Sev-

erages out the number of edges. The nodeRR} con-

catenates the (human) node features with the outputs fromstricted Boltzmann Machines (RBMs) 1,

edgeRNNs, and predicts the activity at each time step.
Parameter sharing and structured feature space An

eral approaches based on Gaussian processgsd], Re-

, 5], and

RNNs [14] have been proposed to model human motion.
Recently, Fragkiadaki et al.1{] proposed an encoder-

important aspect of S-RNN is sharing of parameters acrossRNN-decoder (ERD) which gets state-of-the-art forecasting
the node labels. Parameter sharing between node labelgesults on H3.6m mocap data sei].

happen when an RNN is common in their forward-pass. For S-RNN architecture for human motion. Our S-RNN ar-
example in Figure3c and 3d, the edgeRNNR g, is com-

chitecture follows the st-graph shown in Figuse. Ac-

mon in the forward-pass for the human node and the objectcording to the st-graph, the spine interacts with all the body

nodes. Furthermore, the parameterRef, gets updated

human nodeRNNSs. In this walg g, affects both the human

and object node labels.

nodes, the input into edgeRNRIg, is always a linear com-

structure on the features processedyy, . More formally,
the inputintoR g, is the inner producs’ F, whereF is the
feature matrix storing the edge featurgss.t.e 2 E;. Vec-

parts, and the arms and legs interact with each other. The
through back-propagated gradients from both the object andst-graph is automatically transformed to S-RNN following
Section3.2. The resulting S-RNN have three nodeRNNSs,
one for each type of body part (spine, arm, and leg), four
Since the human node is connected to multiple object e€dgeRNNs for modeling the spatio-temporal interactions
between them, and three edgeRNNSs for their temporal con-
bination of human-object edge features. This imposes annections. For edgeRNNs and nodeRNNs we use FC(256)-
FC(256)-LSTM(512) and LSTM(512)-FC(256)-FC(100)-
FC() architectures, respectively, with skip input and output
connections [8]. The outputs of nodeRNNs are skeleton

tor s captures the structured feature space. Its entries are ioints of different body parts, which are concatenated to re-
f0,1g depending on the node being forward-passed. In theconstruct the complete skeleton. In order to model human
example abov& = [Xy., Xyw]". For the human node, motion, we train S-RNN to predict the mocap frame at time
s=[11]", while for the object node, s=[10]". t + 1 given the frame at timé. Similar to [L4], we grad-
ually add noise to the mocap frames during training. This
simulates curriculum learning’] and helps in keeping the
forecasted motion close to the manifold of human motion.
We present results on three diverse spatio-temporal prob-As node features we use the raw joint values expressed as

lems to ensure generic applicability of S-RNN, shown in exponential map1[4], and edge features are concatenation

4. Experiment



80ms 160ms 320ms 560ms  1000ms
Walking activity
ERD[14] | 1.30 1.56 1.84 2.00 2.38
LSTM-3LR | 1.18 1.50 167 1.81 2.20
S-RNN | 1.08 1.34 1.60 1.90 2.13
Eating activity
ERD[14] | 1.66 1.93 2.28 2.36 241
LSTM-3LR | 1.36 1.79 2.29 2.49 2.82
S-RNN | 1.35 1.71 2.12 2.28 2.58
Smoking activity
ERD[14] | 234 274 3.73 3.68 3.82
LSTM-3LR | 2.05 2.34 3.10 3.24 3.42
S-RNN | 1.90 2.30 2.90 3.21 3.23
Discussion activity
ERD[14] | 2.67 2.97 3.23 3.47 2.92
LSTM-3LR | 225  2.33 2.45 2.48 2.93
S-RNN | 1.67 2.03 2.20 2.39 2.43

5 |Ground Truth LSTM-3LR  ERD S-RNN w/o edgeRNN Table 1: Motion forecasting angle error. f80, 160, 320, 560, 10@0
5] msecs after the seed motion. The results are averaged over 8 seed motion
E sequences for each activity on the test subject.
()
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learns semantic concepts, and demonstrate its modularity
by generating hybrid human motion. Unstructured deep ar-
chitectures like 14] does not offer such modularity.

Qualitative results on motion forecasting.Figure6 shows
Figure 6: Forecasting eating activity on test subject On aperiodic forecasting 1000ms of human motion on “eating” activity
activities, ERD and LSTM-3LR struggle to model human motion. S-RNN, _ the subject drinks while walking. S-RNN stays close
on the other hand, mimics the ground truth in the short-term and generatest th d-truth in th hort-t ) d tes h
human like motion in the long term. Without (w/0) edgeRNNSs the motion O € g_roun -truth in the short-term ar.] generates human
freezes to some mean standing position. See the vitido [ like motion in the long-term. On removing edgeRNNSs, the

parts of human body become independent and stops inter-
of the node features. We train all RNNs jointly to minimize acting through parameters. Hence without edgeRNNs the
the Euclidean loss between the predicted mocap frame anckeleton freezes to some mean position. LSTM-3LR suf-
the ground truth. See supplementary material on the projectffers with a drifting problem. On many test examples it drifts
web page 4] for training details. to the mean position of walking humarnL{]] made similar
observations about LSTM-3LR). The motion generated by
ERD [14] stays human-like in the short-term but it drifts
away to non-human like motion in the long-term. This was
a common outcome of ERD on complex aperiodic activ-

forecasting we follow the experimental setup o] We ities, unlike S-RNN. Furthermore, ERD produced human

downsample H3.6m by two and train on 6 subjects and test".‘Otlon was non'-smooth on many test examp_les. See the
on subject S5. To forecast, we rst feed the architectures VIdeo on the project web page for more exampieg.[

with (50) seedmocap frames, and then forecast the future Quantitative evaluation. We follow the evaluation metric
(100) frames. Following14], we consider walking, eating, 0f Fragkiadaki et al. 14] and present the 3D angle error
and smoking activities. In addition to these three, we also between the forecasted mocap frame and the ground truth
consider discussion activity. in Table1. Qualitatively, ERD models human motion bet-

ter than LSTM-3LR. However, in the short-term, it does
not mimic the ground-truth as well as LSTM-3LR. Fragki-
adaki et al. [ 4] also note this trade-off between ERD and
LSTM-3LR. On the other hand, S-RNN outperforms both
LSTM-3LR and ERD on short-term motion forecasting on
all activities. S-RNN therefore mimics the ground truth in
the short-term and generates human like motion in the long
term. In this way it well handles both short and long term
forecasting. Due to stochasticity in human motion, long-
term forecastsX 500ms) can signi cantly differ from the
ground truth but still depict human-like motion. For this
reason, the long-term forecast numbers in Tdbdee not a
3We reproduce ERD and LSTM-3LR architectures following][ The fair representative of algorithms modeling capabilities. We
authors implementation were not available at the time of submission. also observe that discussion is one of the most challenging
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Evaluation setup. We compare S-RNN with the state-
of-the-art ERD architecturelf] on H3.6m mocap data

set P1]. We also compare with a 3 layer LSTM architecture
(LSTM-3LR) which [14] use as a baseline.For motion

Forecasting is specially challenging on activities with
complex aperiodic human motion. In H3.6m data set, sig-
ni cant parts of eating, smoking, and discussion activities
are aperiodic, while walking activity is mostly periodic. Our
evaluation demonstrates the bene ts of having an underly-
ing structure in three important ways: (i) We present vi-
sualizations and quantitative results on complex aperiodic
activities ([L4] evaluates only on periodic walking motion);
(i) We forecast human motion for almost twice longer than
state-of-the-art14]. This is very challenging for aperiodic
activities; and nally (iii) We show S-RNN interestingly
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| Figure 8: (Left) Generating hybrid motions (See the video £4]). We
= ‘_l demonstrate exibility of S-RNN by generating a hybrid motion of a “hu-
i s Two puffs  One quick man jumping forward on one leg{Right) Train and test error . S-RNN
Left leg cell activations  Leftleg Rightleg |Eating with of smoke puff of smoke generalizes better than ERD with a smaller test error.
forward forward ! right arm with left arm with right arr

Figure 7: S-RNN memory cell visualization. (Left) A cell of the leg motion of ahuman jumping forward on one legs shown
nodeRNN res (red) when “putting the leg forward'Right) A cell of the ; ; ; ;
arm nodeRNN res for “moving the hand close to the face”. We visualize In F|g_ure8 (Left.)' qu this experiment we mOd‘.aled the l.eﬂ
the same cell for eating and smoking activitideé the vided24]) and right leg with different nodeRNNs. We trained two in-
iodi ity for all alaorith dependent S-RNN models — a slower human and a faster
aperiodic activity for all algorithms. . . human (by down sampling data) — and swapped the left leg
User study. We asked users to rate the motions on a Likert nodeRNN of the trained models. The resulting faster hu-
scale of 1 to 3. S-RNN performed best according to the userman, with a slower left leg, jumps forward on the left leg to

study. See supplementary material for the results. keep up with its twice faster right légUnstructured archi-
To summarize, unstructured approaches like LSTM-3LR tectures like ERD14] does not offer this kind of exibility.
and ERD struggles to model long-term human motion on  Figure8 (Right) examines the test and train error with it-
complex activities. S-RNN's good performance is attributed erations. Both S-RNN and ERD converge to similar training
to its structural modeling of human motion through the un- error, however S-RNN generalizes better with a smaller test
derl)l/ing Sht'gft’iljph- S'RN'\(; models each body pal;t sepa-error for next step prediction. Discussion in supplementary.
rately with nodeRNNs and captures interactions between - . C
themywith edgeRNNs in order th)) produce coherent motions.4'3' Human activity detection and anticipation
In this section we present S-RNN for modeling human
activities. We consider the CAD-12(2 ] data set where
We now present several insights into S-RNN architecture the activities involve rich human-object interactions. Each
and demonstrate the modularity of the architecture which activity consist of a sequence of sub-activities (e.g. mov-
enables it to generate hybrid human motions. ing, drinking etc.) and objects affordance (e.g., reachable,
Visualization of memory cells. We investigated if S-  drinkable etc.), which evolves as the activity progresses.
RNN memory cells represent meaningful semantic sub- Detecting and anticipating the su.b-act|V|t|es and affordance
motions. Semantic cells were earlier studied on other prob-€nables personal robots to assist humans. However, the
lems 7], we are the rst to present it on a vision task problem |s_challeng|r_19 as |t_|nvolvgs compl_ex interactions
and human motion. In Figuré (left) we show a cell in  ~ huma_ms interact with mul_t|ple objects during an activity,
the leg nodeRNN learns the semantic motiomaiving the and obje::ts als”o_ mtera}‘ct with eash other (e.g. pouring wa-
leg forward The cell res positive (red color) on the for-  t€F from “glass” into a “container”), which makes it a par-
ward movement of the leg and negative (blue color) on its ficularly good t for evaluating our method. Koppula et
backward movement. As the subject walks, the cell alter- &l- [31, 2] represents such rich spatio-temporal interactions
natively res for the right and the left leg. Longer activa- With the st-graph shown in Figurgb, and models it with
tions in the right leg corresponds to the longer steps taken@ Spatio-temporal CRF. In this experiment, we show that
by the subject with the right leg. Similarly, a cell in the Modeling the same st-graph with S-RNN yields superior re-
arm nodeRNN learns the conceptrabving hand close to ~ Sults- We use the node and edges features ftoin [
the face as shown in Figur@ (right). The same cell res Figure 3b shows our S-RNN architecture to model the
whenever the subject moves the hand closer to the face durst-graph. Since the number of objects varies with envi-
ing eating or smoking. The cell remains active as long asronment, factor sharing between the object nodes and the
the hand stays close to the face. See the vidéDp [ human-object edges becomes crucial. In S-RRN, and
Generating hybrid human motion. We now demon- Re, handles gll the o_bject nodes and the human-o_bject
strate the exibility of our modular architecture by gener- ©d9€s respectively. This allows our xed S-RNN architec-
ating novel yet meaningful motions which are not in the tUre to handle varying size st-graphs. For edgeRNNs we
data set. Such modularity is of interest and has been ex-US€ @ single layer LSTM of size 128, and for nodeRNNs we
plored to generate diverse motion stylés][ As a result ~ US€ LSTM(256)-softmax]. At each time step, the human
of having an underlying high-level structure, our approach N0deRNN outputs the sub-activity label (10 classes), and
allows us to exchange RNNs between the S-RNN architec-the object nodeRNN outputs the affordance (12 classes).

tures trained on different motion styles. We leverage this to  4imagine your motion forward if someone holds your right leg and
create a novel S-RNN architecture which generates a hybridruns!

4.2. Going deeper into structural-RNN




Table 2:Maneuver Anticipation on 1100 miles of real-world driving data. S-RNN is derived from the st-graph shown in Figéie Jain et al. 27] use
the same st-graph but models it in a probabilistic frame with AIO-HMM. The table shows ayeeaigion recall andtime-to-maneuverTime-to-maneuver
is the interval between the time of algorithm's prediction and the start of the maneuver. Algorithms are compared on the featirds from [

Turns Lane change All maneuvers
Method Pr (%) Re(%) m:anEvtgr (s) Pr (%) Re(%) m1a-:1r23\/tgr (s) Pr (%) Re(%) m;-IanEvtgr (s)
SVM 64.7 47.2 2.40 73.7 57.8 2.40 43.7 37.7 1.20
AlIO-HMM [ 27] 80.8 75.2 4.16 83.8 79.2 3.80 77.4 71.2 3.53
S-RNN w/o edgeRNN  75.2 75.3 3.68 85.4 86.0 3.53 78.0 71.1 3.15
S-RNN | 81.2 78.6 3.94 92.7 84.4 3.46 82.2 75.9 3.75

Table 3:Results on CAD-120 9. S-RNN architecture derived from the
st-graph in Figuréb outperforms Koppula et al3[, 29 which models the
same st-graph in a probabilistic framework. S-RNN in multi-task setting
(joint detection and anticipation) further improves the performance.

Detection F1-score Anticipation F1-score
Method Sub- Object Sub- Object
activity (%) Affordance (%)| activity (%) Affordance (%)
Koppula et al. B1, 299 80.4 815 379 36.7
S-RNN w/o edgeRNN 82.2 82.1 64.8 724
S-RNN 83.2 88.7 62.3 80.7
S-RNN (multi-task) 82.4 91.1 65.6 80.9

Figure 9: Qualitative result on eating activity on CAD-120. Shows
multi-task S-RNN detection and anticipation results. For the sub-activity

Having observed the st-graph upto tirhethe goal is to attimet, the labels are anticipated at time 1. (Zoom in to see the image)
detectthe sub-activity and affordance labels at the current depends on the number of RNNs. Since the forward-pass
timet, and alsanticipatetheir future labels of the time step  through all edgeRNNs and nodeRNNs can happen in paral-
t+1. For detection we train S-RNN on the labels of the cur- lel, in practice, the complexity only depends on the cascade
rent time step. For anticipation we train the architecture to of two neural networks (edgeRNN followed by nodeRNN).
predict the labels of the next time step, given the observa-
tions upto the current time. We also traimmaulti-taskver-
sion of S-RNN, where we add two softmax layers to each  We nally present S-RNN for another application which
nodeRNN and jointly train for anticipation and detection.  involves anticipating maneuvers several seconds before they

Table 3 shows the detection and anticipation F1-scores Nappen. Jain et al2f] represent this problem with the st-
averaged over all the classes. S-RNN signi cantly im- 9raph shown in Figuréc. They model the st-graph as a
proves over Koppula et al. on both anticipaticGii]and  Probabilistic Bayesian network (AIO-HMMZY]). The st-
detection P9). On anticipating object affordance S-RNN grap_h represents the interactions between the opservatlons
F1-score is 44% more thari]], and 7% more on detec- outside the vehicle (eg. the road features), the driver's ma-
tion. S-RNN does not have any Markov assumptions like NEUVers, a_nd the observations inside the vehicle (eg. _the
spatio-temporal CRF, and therefore, it better models thedrivers facial features). We model the same st-graph with
long-time dependencies needed for anticipation. The ta-S-RNN architecture using the node and edge features from
ble also shows the importance of edgeRNNs in handling Jain et al. £7]. Table 2 shows the performance of differ-
spatio-temporal components. EdgeRNN transfers the infor-€nt algorithms on this task._S-RNN perform_s better than the
mation from the human to objects, which helps is predicting State-of-the-art AIO-HMM £7] in every setting. See sup-
the object labels. Therefore, S-RNN without the edgeRNNs Plementary material for the discussion and detailg.[
poorly models the objects. This signi es the importance of 5. Conclusion

edgeRNNs and also validates our design. Finally, training , o
S-RNN in a multi-task manner works best in majority of ~ We proposed a generic and principled approach for
the cases. In Figur@ we show the visualization of an eat- COMbining high-level spatio-temporal graphs with sequence
ing activity. We show one representative frame from each Modeling success of RNNs. We make use of factor graph,
sub-activity and our corresponding predictions. and factor sharing in order to obtain an RNN mixture that

S-RNN complexity. In terms of complexity, we discuss is scalable and applicable to any problem expressed over

two aspects as a function of the underlying st-graph: (i) the sft-gra.phs. Our RNN mixture captures the rich intgragz-
number of RNNSs in the mixture; and (ii) the comple>;ity of tions in the underlymg_ st-graph. ‘We demon_strated S|gr_1|f—
f d- Th b féNN d d th _icant improvements with S-RNN on three diverse spatio-
orward-pass. 1he number o 'NS depends on the num temporal problems including: (i) human motion modeling;
ber of semantically similar nodes in the st-graph. The over-

; . (i) human-object interaction; and (iii) driver maneuver an-
all S-RNN architecture is compact because the edgeRNNS: ©. . . .
are shared between the nodeRNNS, and the number of s icipation. By visualizing the memory cells we showed that

X : ; . O S€5_RNN learns certain semantic sub-motions, and demon-
mantic categories are usually few in context-rich applica-

tions. Furthermore, because of factor sharing the number Otstrated its modularity by generating novel human motion.

RNNs does not increase if more semantically similar nodes  sye acknowledge NRI #1426452, ONR-N00014-14-1-0156, MURI-
are added to the st-graph. The forward-pass complexityWF911NF-15-1-0479 and Toyota Center grant #122282.

4.4. Driver maneuver anticipation
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